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An approach to the synchronization of pseudorandom systems is proposed and applied to secure speech
communication. The encoding signal produced by the pseudorandom synchronization scheme passes the ran-
dom test, and shows much more complex dynamics, better random properties, and greater sensitivity to
parameter mismatches than that produced by the active-passive decomposition scheme. Also, two coupled
pseudorandom systems can be exactly synchronized despite their different initial states or seeds. Pseudoran-
dom encoding and synchronization may yield great security in communication.
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Despite extreme sensitivity to initial conditions, two cha-
otic systems can be synchronized using some techniques
f1–3g like active-passive decompositionsAPDd, which has
shown potential applications in secure communization. The
uses of hyperchaotic or spatiotemporal chaotic systems have
received considerable attentionf4–7g. However, recent stud-
ies have shown that return mapf8g, nonlinear dynamic fore-
castingf9g, and chaos synchronization via parameter adap-
tion f10–13g may be used to extract messages encoded by a
chaotic signal. In order to further improve security, the dy-
namics of the encoding signal need to be more complex. A
pseudorandom numbersPRNd generator with infinite degrees
of freedom and statistical properties approaching a true ran-
dom number series represents a better candidate for encoding
messages in secure communication. PRN generators have al-
ready been applied in stochastic optimization, Monte Carlo
simulation, and molecular dynamicsf14–18g. However, tra-
ditionally, the pseudorandom algorithm and initial state value
or seed of a PRN generator need to be exactly determined in
order to reproduce the same PRN series. It is difficult to
determine the output of a single PRN generator without
knowing its initial value.

In contrast to previous studies based on chaotic systems
f1–7g, in this paper we introduce pseudorandom synchroni-
zation to PRN generators. In terms of complexity, the ran-
dom test, and sensitivity to parameter mismatches, the en-
coder produced by the pseudorandom synchronization
scheme is compared with that produced by the APD scheme
of chaos synchronization. The pseudorandom encoding sig-
nals have much more complex dynamics, better random
properties, and greater sensitivity to parameter mismatches
than the chaotic signals, and are capable of effectively mask-
ing a message. Furthermore, the scheme of pseudorandom
synchronization is applied to secure speech communication
based on a pseudorandom one-way coupled ring map lattice.
Two suitably coupled pseudorandom systems are synchro-
nized despite different initial states.

A PRN generator is a deterministic algorithm that pro-

duces pseudorandom output approaching the statistical prop-
erties of a true random number seriesf14–18g. We consider
that a system with pseudorandom dynamics can be written in
terms of the following equations with nonpseudorandom and
pseudorandom operators:

Xn+1 = FsXn,jnd, jn+1 = PRsXn,jnd, s1d

whereXn=(xns1d ,xns2d ,… ,xnsmd). jn is the pseudorandom
variable produced by a pseudorandom number generator
PRs•d, such as a linear congruential generatorf14–18g. To
synchronize the pseudorandom drive system, we create a re-
sponse system driven by the pseudorandom variablejn as

Yn+1 = FsYn,jnd. s2d

For the difference en=Xn−Yn, if the difference en+1
=FsXn,jnd−FsYn,jnd has an asymptotically stable zero so-
lution, then the two pseudorandom systems are synchronous,
i.e., limn→`iXn−Yni=0. Chaotic synchronization methods,
such as the APD scheme, have been previously investigated
f1–7g, where the drive and response systems are defined as
chaotic, andjn is defined as a chaotic driving signal. How-
ever, chaos with a finite dimension differs from random
white noise with infinite degrees of freedom. Chaotic sys-
tems with finite dimensions and large robustness to param-
eter mismatches in synchronization cannot qualify as good
PRN generators since such systems may not pass the random
test and may be decoded by using the parameter estimate
methodf10–13g. In comparison with such chaotic systems
like the logistic map and the spatiotemporal coupled map
lattice, the following calculations show that the pseudoran-
dom series representing a simulation of random noise have
much more complex dynamics, better random properties, and
greater sensitivity to parameter mismatches than the chaotic
systems. Thus, in this paper, we investigate the applications
of pseudorandom systems, where the drive system is defined
as a pseudorandom system andjn is a pseudorandom vari-
able because of the randomization operatorPRs•d. Consider-
ing different initial states of two PRN generatorss1d ands2d,
we introduce the synchronization technique. Under the driv-
ing pseudorandom functionjn, two pseudorandom systems*Electronic address: zhang@surgery.wisc.edu
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can be synchronized despite different initial conditions. We
therefore call this schemepseudorandom synchronization
sPRSd. A series of deterministic algorithms for PRN genera-
tors have been proposedf14,16,19g. We previously applied a
truncated synchronizationf20,21g, which represents a spe-
cific case of PRS. PRN algorithms can be chosen with flex-
ibility, which may lead to more general applications of the
PRS scheme.

To illustrate this scheme for synchronizing pseudorandom
systems, we consider the following decomposition based on
the logistic map in the first example:

xn+1 = 0.5xn + jn,

jn = 2gn/s231 − 1d − 1,

gn+1 = „16 8073 hgn + intfs1 − 2xn
2 − 0.5xnd

3s231 − 1dgj…mods231 − 1d, s3d

where the pseudorandom variablejn within the interval
f21,1g is produced based on the linear congruential genera-
tor CONG,hn+1=s16 8073hndmods231−1d f14g. As a com-
parison, the APD schemef2g is applied to the drive system
wherexn+1=0.5xn+sn andsn=1−2xn

2−0.5xn.
Figure 1 shows thatjn produced by PRS has more com-

plex dynamics thansn produced by APD. The dynamics ofsn

and jn can be reconstructed using the time delay technique
f22g. The proper time delay can be determined by using the
mutual information methodf23g. For the time seriessn with
length N=20 000, a time-delay vectorhsn,sn+1,… ,sn+sd−1dj
reconstructs the phase space whered is the embedding di-
mension. The reconstructed phase spacessn,sn+1d displays a
simple structure in Fig. 1sad. However, in the reconstructed
phase spacesjn,jn+1d, a cloud of points does not present any
structurefsee Fig. 1sbdg. To quantitatively describe the com-
plexities ofsn andjn, we calculate the correlation dimension
D2 f24g. Figure 1scd shows the relationship between the es-
timatedD2 andd, where the curves I, II, and III correspond
to the CONG pseudorandom series,jn, andsn, respectively.
When d is increased, the estimated dimension ofsn ap-
proachesD2=1.0±0.01; however, the estimated dimensions
of jn and CONG series do not converge. Unlikesn produced
by APD, jn produced by PRS exhibits much more complex
dynamics, which may be difficult to decode using return map
f8g and nonlinear dynamic predictionf9g.

Furthermore,jn shows good statistical properties. A pure
random process with uniform distribution onf21, 1g has a
mean of 0 and a standard deviation ofÎ1/3<0.5774.jn in
Fig. 1 has a mean value of 0.0066 and a standard deviation
of 0.5767, representing a good simulation of uniform noise.
In order to test the randomness ofsn, jn, and CONG, the
chi-square test and Kolmogorov-Smirnov test were per-

FIG. 1. sad The reconstructed phase spacessn,sn+1d. sbd sjn,jn+1d. scd D2 vs d, where curves I, II, and III correspond to CONG,jn, and
sn, respectively.sdd The drive variablexn and the synchronization erroren.
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formed f25g, where each signal with length 20 000 was di-
vided into 20 classes. Thex2 values and Kolmogorov-
Smirnov D values ofsn, jn, and CONG are calculated as
s8140, 0.1660d, s14.748, 0.0061d, and s10.147, 0.0061d, re-
spectively. At the 0.05 significance level, the critical values
of the chi-square test with 19 degrees of freedom and
Kolmogorov-Smirnov test ares30.144, 0.009 62d. jn and
CONG both pass these two random testssx2 value
,30.144 andD value ,0.009 62d, but sn fails since itsx2

value andD value exceed the critical values. Differing from
the chaoticsn, jn represents a PRN series. The pseudorandom
variablejn drives the response system asyn+1=0.5yn+jn. For
the differenceen=xn−yn, we have en+1=0.5en. Thus, al-
though starting from different initial conditions, two pseudo-
random systems are finally synchronous, that is,uxn−ynu
→0 whenn→`, as shown in Fig. 1sdd.

One-way coupled ring map latticesOCRMLd has been
applied as a spatiotemporal system to secure speech commu-
nication f4g. As an application of the PRS scheme, we per-
formed digital speech communication based on a pseudoran-
dom one-way coupled ring map latticesPR-OCRMLd with
lengthm. The drive system is

xn+1s1d = s1 − «df1 − mxn
2s1dg + «jn/s231 − 1d,

xn+1sld = s1 − «df1 − mxn
2sldg + «f1 − mxn

2sl + 1dg

sl = 2,3,…,md,

xnsm+ 1d = xns1d,

jn = gn + in,

gn = „168073 inthf1 − mxn
2s2dg 3 s231 − 1dj…mods231 − 1d,

s4d

wheren denotes the discrete time, andl denotes the lattice
site index. As a comparison, we also considered the OCRML
system to which we previously applied the APD schemef4g.
Similar to the systems3d, the driving signaljn of the PR-
OCRML system has a complex reconstructed phase space
and its estimated dimension increases with the embedding
dimension. For the normalizedjn within f21, 1g, the mean
value and standard deviation are estimated as 0.0032 and
0.5749, respectively. The chi-square test and Kolmogorov-
Smirnov test are performed for the driving signals from the
OCRML and PR-OCRML systems withm=3. The normal-
izedjn from the PR-OCRML system passes the random tests
sx2 value =22.014,30.144 andD value =0.0067,0.0136d,
but the driving signal from the OCRML system failss
x2 value =7718 andD value =0.1653d. Thus jn produced
by the PR-OCRML system can be applied as a PRN series.
To synchronize the pseudorandom systems4d, we have the
response system

yn+1s1d = s1 − «8df1 − m8yn
2s1dg + «8jn/s231 − 1d

yn+1sld = s1 − «8df1 − m8yn
2sldg + «8f1 − m8yn

2sl + 1dg

sl = 2,3,…,md,

ynsm+ 1d = yns1d, s5d

with the driving variablejn. xnskd and ynskd are bounded
satisfying uxnskdu,M and uynskdu,M, whereM is constant
and k=1,2,… ,m. For «=«8, m=m8, and enskd=xnskd
−ynskd, we have the difference dynamics:

en+1s1d = − s1 − «dms1dfxns1d + yns1dgens1d,

en+1sld = − s1 − «dmsldfxnsld + ynsldgensld − «msl + 1dfxnsl + 1d

+ ynsl + 1dgensl + 1d,

en+1sm+ 1d = en+1s1d. s6d

When the system parametersm and« satisfy uen+1skd /enskdu
ø2s1−«dmM !1, two pseudorandom systems can be syn-
chronized, that is, limn→`uxnskd−ynskdu=0. In secure speech
communication, we apply the PRN series to encode the mes-
sage in as jn=gn+ in. With two synchronous systems
gn(xns2d)=gn(yns2d), we can recover the exact message by
in8=jn−gn(yns2d). Figure 2 shows the performance of speech
communication using the PRS scheme wherem=3, m=1.9,
and«=0.99, and the messagein is a pathological voice with
multiple vowel /a/ scenarios generated by a patient with right
vocal polyps, sampled at 20 kHz with 16-bit resolution. Fig-
ures 2sad–2scd show the time series of the pseudorandom
masking signalgn, the messagein, and the recovered signal

FIG. 2. Speech secure communication, where thesad pseudoran-
dom masking signalgn, sbd the messagein, and scd the recovered
signal in8 are shown. Their corresponding spectrograms are insdd,
sed, andsfd, respectively.
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in8, respectively. The corresponding spectrograms ofgn, in,
and in8 are illustrated in Figs. 2sdd–2sfd, wherex and y axes
represent time and frequency components. Disordered voices
from patients with laryngeal pathologies may produce sub-
harmonic patterns and broadband spectraf26g, as shown in
Fig. 2sed. Thus, to mask all frequency components of the
disordered voicein, the masking signalgn should have a
noiselike broadband spectrum. A pseudorandom signal can
mask the broadband disordered voice well. In particular, us-
ing PRS, the encoded message can be exactly recovered.

The PRS scheme also has extreme sensitivity to parameter
mismatches between the drive and response systems. Figure
3sad shows the relationship between the errorD and the pa-
rameter differenceDm=m8−m, where

D =Î 1

N
o
n=1

N

fsin8 − ind/s231 − 1dg2.

Curves I and II correspond to the PR-OCRML systems with
m=10 and 3, and curves III and IV correspond to the

OCRML systems withm=10 and 3. WhenDm=0, the error
D=0 is yielded and the message is exactly recovered. How-
ever, a slight parameter mismatchDm=10−5 of the PR-
OCRML systems withm=3 results in a large distortionD
saturating to 0.408, so that noise is heard in the response
system. Increasing the lattice lengthm will amplify the dis-
tortion D f4g; however, even with the same lengthm, the
PR-OCRML system is much more sensitive to parameter
mismatches than the OCRML system.

The sensitivity of the PRS scheme to parameter mis-
matches makes decoding the message through estimation of
system parameters difficult. Previous studies have suggested
that even if a synchronization scheme is robust to parameter
mismatches, applying parameter adaption to the response
system may estimate the drive parametersf10–13g. We pre-
viously proposed an iterative approach of parameter adap-
tions f13g. Using this technique,m and « of the response
OCRML system withm=3 can be estimated, as shown in
Fig. 3sbd, where the drive parameters arem=1.99 and«
=0.9. Although the original values of the response param-
eters arem8=1.2 and«8=0.8, their asymptotical values con-
verge to 1.99 and 0.9, respectively. In contrast to this, the
parameter adaption technique cannot estimate the PR-
OCRML parameters. A sufficiently small parameter mis-
match of the PR-OCRML systems yields a very large syn-
chronization error, so that the parameter adaption technique
cannot target its control to approach the drive parameters.
Thus communication using the PRS scheme is highly secure
against the decoding of system parameters or keys.

In conclusion, we have proposed a scheme to synchronize
two pseudorandom systems and showed its potential appli-
cation in pseudorandom communication. In comparison with
the chaotic signal produced by APD scheme, the pseudoran-
dom signal produced by this pseudorandom synchronization
scheme passes the random test, and has much more complex
dynamics, better random properties, and greater sensitivity to
parameter mismatches. These findings show that pseudoran-
dom number generators with infinite degrees of freedom rep-
resent a better candidate for signal encoding. Traditionally,
the pseudorandom algorithm and initial state value or seed of
a pseudorandom number generator must be exactly known to
reproduce the pseudorandom number series. However, by us-
ing this pseudorandom synchronization scheme, two coupled
pseudorandom systems can be exactly synchronized despite
their different initial states or seedssor the initial seed of a
pseudorandom number generator is unnecessarily requiredd.
The pseudorandom synchronization scheme can effectively
mask and exactly recover a broadband disordered voice.
Synchronization techniques may be applied to generally de-
terministic systems, such as chaotic systems and PRN gen-
erators. The research records of patients with laryngeal pa-
thologies, including voice data and patient information,
should be kept confidential and available only to those inves-
tigators involved in a given study. For secure online trans-
missions of voice data, pseudorandom synchronization might
potentially present a valuable scheme for secure data com-
munication. Moreover, there is a large amount of flexibility
in choosing the PRN algorithms and decomposition methods
in pseudorandom synchronization. It allows the convenient
integration of different pseudorandom algorithmsf14–21g

FIG. 3. sad The errorD versus the parameter differenceDm,
where curves I and II correspond to the PR-OCRML systems with
m=10 and 3, respectively, and curves III and IV correspond to the
OCRML systems withm=10 and 3, respectively.sbd The response
parameterspiskd estimated using the parameter adaption technique
f13g, where the dotted lines represent the drive parametersm
=1.99 and«=0.9. Curves I and II correspond to the PR-OCRML
system withm=3, and curves III and IV correspond to the OCRML
system withm=3.
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into this pseudorandom synchronization scheme. Pseudoran-
dom synchronization represents an interesting way to com-
bine the features of pseudorandom number generators and
synchronization techniques, and might be applied to general
situations, such as spread-spectrum communication.
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